XDS510USB PLUS
JTAG Emulator

Technical Reference

2007 DSP Development Systems
XDS510USB PLUS
JTAG Emulator
Installation Guide

509405-0001 Rev. A
January 2007

SPECTRUM DIGITAL, INC.
120502 Exchange Drive, #440 Stafford, TX. 77477
Tel: 281.494.4500 Fax: 281.494.5310
sales@spectrumdigital.com www.spectrumdigital.com
IMPORTANT NOTICE

Spectrum Digital, Inc. reserves the right to make changes to its products or to discontinue any product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

Spectrum Digital, Inc. warrants performance of its products and related software to current specifications in accordance with Spectrum Digital's standard warranty. Testing and other quality control techniques are utilized to the extent deemed necessary to support this warranty.

Please be aware that the products described herein are not intended for use in life-support appliances, devices, or systems. Spectrum Digital does not warrant nor is liable for the product described herein to be used in other than a laboratory development environment. Use in any other environment voids the warranty.

Spectrum Digital, Inc. assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does Spectrum Digital warrant or represent any license, either express or implied, is granted under any patent right, copyright, or other intellectual property right of Spectrum Digital, Inc. covering or relating to any combination, machine, or process in which such Digital Signal Processing development products or services might be or are used.

WARNING

This equipment is intended for use in a laboratory test environment only. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to subpart J of part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

TRADEMARKS

Windows 2000, and Windows XP are registered trademarks of Microsoft Corp.

Code Composer Studio is a trademark of Texas Instruments

Copyright © 2007 Spectrum Digital, Inc.
1 Introduction to the XDS510USB PLUS JTAG Emulator .. 1-1
 Provides an overview of the XDS510USB PLUS emulator along with the keys features.
 1.0 Overview of the XDS510USB PLUS ... 1-2
 1.1 Key Features of the XDS510USB PLUS ... 1-2
 1.2 Key Items on the XDS510USB PLUS .. 1-3
2 Installing the XDS510USB PLUS JTAG Emulator ... 2-1
 Lists the hardware and software you’ll need to install the XDS510USB PLUS JTAG Emulator, and the installation procedure of the XDS510USB PLUS in your system.
 2.1 What You’ll Need ... 2-2
 Hardware checklist ... 2-2
 Software checklist ... 2-2
 2.2 Installing the XDS510USB PLUS JTAG Emulator 2-3
 2.2.1 XDS510USB PLUS Installation Checklist ... 2-3
 2.3 XDS510USB PLUS LEDs ... 2-5
3 Specifications For Your Target System’s Connection to the Emulator 3-1
 Contains information about connecting your target system to the XDS510USB PLUS JTAG Emulator
 3.1 Designing Your Target System’s Emulator Connector (14-pin and 20-pin CTI Header) ... 3-2
 3.2 Bus Protocol .. 3-4
 3.3 Emulator Cable Pod Logic ... 3-5
 3.4 Emulator Cable Pod Signal Timing .. 3-6
 3.5 Buffering Signals Between the Emulator and the Target System 3-7
 3.6 Emulation Timing Calculations .. 3-10
 3.7 Changing Target Cables ... 3-12
 3.8 Target Cables ... 3-17
Appendix A Mechanical Information .. A-1
 A.1 Mechanical Dimensions of the XDS510USB PLUS JTAG Emulator A-2
About This Manual

This document describes the module level operations of the XDS510USB PLUS JTAG Emulator. This emulator is designed to be used with digital signal processors (DSPs) and microcontrollers designed by Texas Instruments.

The XDS510USB PLUS JTAG Emulator is a table top module that attaches to a personal computer or laptop to allow hardware engineers and software programmers to develop applications with DSPs and microcontrollers.

Notational Conventions

This document uses the following conventions.

The XDS510USB PLUS JTAG Emulator will sometimes be referred to as the XDS510USB PLUS, JTAG Emulator, or Emulator.

Program listings, program examples, and interactive displays are shown in a special italic typeface. Here is a sample program listing.

equations
\[lrd = !\text{istrobe}&\text{rw}; \]

Information About Cautions

This book may contain cautions. *This is an example of a caution statement.* A caution statement describes a situation that could potentially damage your software, or hardware, or other equipment. The information in a caution is provided for your protection. Please read each caution carefully.

Related Documents

Texas Instruments Code Composer and Code Composer Studio Users Guide
Chapter 1
Introduction to the XDS510USB PLUS JTAG Emulator

This chapter provides you with a description of the XDS510USB PLUS JTAG Emulator along with the key features.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Overview of the XDS510USB PLUS JTAG Emulator</td>
<td>1-2</td>
</tr>
<tr>
<td>1.1 Key Features of the XDS510USB PLUS JTAG Emulator</td>
<td>1-2</td>
</tr>
<tr>
<td>1.2 Key Items on the XDS510USB PLUS JTAG Emulator</td>
<td>1-3</td>
</tr>
</tbody>
</table>
1.0 Overview of the XDS510USB PLUS JTAG Emulator

The XDS510USB PLUS JTAG Emulator is designed to be used with digital signal processors (DSPs) and microprocessors which operate with +1.8 to +5 volt levels on the JTAG interface. This emulator is powered from USB line. This means no power is drawn from the target system.

1.1 Key Features of the XDS510USB PLUS JTAG Emulator

The XDS510USB PLUS JTAG Emulator has the following features:

- Supports Texas Instrument’s Digital Signal Processors (C2xxx, C54xx, C55xx, C67xx, C64xx, TMS470, OMAP) with JTAG interface (IEEE 1149.1)
- Compatible with Spectrum Digital XDS510 USB and XDS510 USB Galvanic JTAG emulators, and SDConfig, SDFlash, and other Spectrum Digital utilities.
- Advanced emulation controller provides higher performance.
- Compatible with USB 1.x and USB 2.0 (high speed)
- Power provided by host USB port or USB hub
- Supports USB interface with host PC, no adapter card required.
- Supports +1.8 to +5 volt JTAG interfaces.
- Replacable cables (compatible with Spectrum Digital’s XDS560R).
- Reset switch.
- Programmable TCK frequency up to 32 Mhz.
- ARM Ltd. style Adaptive Clocking support.
- Programmable EMU0/1 pins support for boundary scan test support.
- One status LED for operational status.
- Compatible with Texas Instruments Code Composer Studio
- Compatible with Spectrum Digital’s Flash programming utility
- Compatible with Windows 2000, and Windows XP Operating Systems
1.2 Key Items on the XDS510USB PLUS JTAG Emulator

Figure 1-1 shows the XDS510USB PLUS. The key items identified are:

- Status LEDs
- JTAG connector
- Tail - XDS560R compatible
- USB connector to the host PC or hub
- Reset switch

![Figure 1-1, KEY ITEMS ON THE XDS510USB PLUS](image-url)
Chapter 2
Installing the XDS510USB PLUS JTAG Emulator

This chapter helps you install the XDS510USB PLUS JTAG Emulator. For use with specific software packages such as the TI’s Code Composer Studio refer to their respective documentation.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 What You’ll Need</td>
<td>2-2</td>
</tr>
<tr>
<td>Hardware checklist</td>
<td>2-2</td>
</tr>
<tr>
<td>Software checklist</td>
<td>2-2</td>
</tr>
<tr>
<td>2.2 Installing the XDS510USB PLUS JTAG Emulator</td>
<td>2-3</td>
</tr>
<tr>
<td>2.2.1 XDS510USB PLUS JTAG Emulator Installation Checklist</td>
<td>2-3</td>
</tr>
<tr>
<td>2.3 Using the Low Voltage Adapter with the XDS510USB PLUS</td>
<td>2-5</td>
</tr>
<tr>
<td>2.4 XDS510USB PLUS JTAG Emulator LED</td>
<td>2-7</td>
</tr>
</tbody>
</table>
2.1 What You’ll Need

The following checklists detail items that are shipped with the XDS510USB PLUS JTAG emulator and additional items you’ll need to use these tools.

Hardware checklist

- **host** An IBM PC/AT or 100% compatible PC or laptop with a hard-disk system and CD-ROM disk drive with a USB port

- **memory** Minimum of 32MB

- **display** Color VGA or LCD

- **emulator module** XDS510USB PLUS JTAG emulator

- **target system** A board with a TI DSP or Microcontroller and power supply

- **connector to target system** 14-pin connector (two rows of seven pins) --- see Chapter 3 for more information about this connector

Software checklist

- **operating system** Windows 2000, Windows XP

- **software tools** Compiler/assembler/linker for DSP or Microcontroller

- **debugger** Code Composer or Code Composer Studio

- **drivers** Spectrum Digital drivers for TI Code Composer (included with XDS510USB PLUS emulator or available from Spectrum Digital’s website)
2.2 Installing the XDS510USB PLUS JTAG Emulator

This section contains the steps for installing the XDS510USB PLUS JTAG Emulator.

WARNING

Target Cable Connectors:

Be very careful with the target cable connectors. Connect them gently; don’t force them into position, or you may damage the connectors.

Do not connect or disconnect the 14-pin cable while the target system is powered up.

2.2.1 XDS510USB PLUS Installation Checklist

To install the XDS510USB PLUS JTAG emulator execute the following checklist:

- Turn off the power to your target board.

- Insert the Spectrum Digital USB Driver CD-ROM in the computer's CD-ROM drive and install the device drivers. Code Composer/Studio should be installed already.

- Connect the supplied USB cable to your PC or laptop. If you connect the USB cable to a USB hub be sure the hub is connected to the PC or laptop and power is applied to the hub.

- Connect the supplied USB cable to your XDS510USB PLUS emulator.

- Your system configuration should now look like that in Figure 2-1 or Figure 2-2. After a few moments Windows will detect new hardware and prompt you with “New Hardware Found” screens. Follow the instructions on the screens and let Windows find the USB driver files “sd540u2.inf” and “sdusbemu.sys” on your CD-ROM drive.

 If you want to verify a successful USB driver install, right mouse on Control Panel, then select Properties -> Hardware -> Device Manager. You should see a new class “SD USB Based Debug Tools” and one Spectrum Digital XDS510USB PLUS emulator installed.

- Now connect the tail of the emulator to the 2 x 7 header on your target board. Apply power to the target board.
Figures 2-1 and 2-2 show two typical configurations in which the XDS510USB PLUS can be used with a host PC and target board.

![Diagram of XDS510USB PLUS JTAG Emulator installation](image)

Figure 2-1, Connecting the XDS510USB PLUS To Your Target System
2.3 XDS510USB PLUS LED

The XDS510USB PLUS has one (1) red Light Emitting Diode (LED). This LED provides the user with the status of the emulator. The meaning of the LED is described in the table below.

Table 1: XDS510USB PLUS LEDs

<table>
<thead>
<tr>
<th>LED Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Indicates activity over the USB Bus</td>
</tr>
</tbody>
</table>
Chapter 3
Specifications For Your Target System’s Connection to the Emulator

This chapter contains information about connecting your target system to the emulator. Your target system must use a special 14-pin connector for proper communication with the emulator.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Designing Your Target System’s Emulator</td>
<td>3-2</td>
</tr>
<tr>
<td>3.2 Bus Protocol</td>
<td>3-4</td>
</tr>
<tr>
<td>3.3 Emulator Cable Pod Logic</td>
<td>3-5</td>
</tr>
<tr>
<td>3.4 Emulator Cable Pod Signal Timing</td>
<td>3-6</td>
</tr>
<tr>
<td>3.5 Buffering Signals Between the Emulator and the Target System</td>
<td>3-7</td>
</tr>
<tr>
<td>3.6 Emulation Timing Calculations</td>
<td>3-10</td>
</tr>
<tr>
<td>3.7 Changing Target Cables</td>
<td>3-12</td>
</tr>
<tr>
<td>3.8 Target Cables</td>
<td>3-17</td>
</tr>
</tbody>
</table>
3.1 Designing Your Target System’s Emulator Connector (14-pin Header)

Certain devices support emulation through a dedicated emulation port. This port is a superset of the IEEE 1149.1 (JTAG) standard and is accessed by the emulator. To perform emulation with the emulator, your target system must have a 14-pin (2x7) or 20-pin CTI (2x10) connector with the connections that are shown in Figure 3-1. Table 1 describes the emulation signals.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TMS</td>
<td>TRST-</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>TDI</td>
<td>GND</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Header Dimensions</td>
</tr>
<tr>
<td>5</td>
<td>PD</td>
<td>no pin (key)</td>
</tr>
<tr>
<td>6</td>
<td>TDO</td>
<td>Pin-to-Pin spacing, 0.100 in. (X,Y)</td>
</tr>
<tr>
<td>7</td>
<td>TCK-RET</td>
<td>GND</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Pin width, 0.025-in. square post</td>
</tr>
<tr>
<td>9</td>
<td>TCK</td>
<td>GND</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Pin length, 0.235-in. nominal</td>
</tr>
<tr>
<td>11</td>
<td>EMU0</td>
<td>GND</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>EMU1</td>
</tr>
</tbody>
</table>

Figure 3-1, 14 Pin Header Signals and Dimensions

Although you can use other 14 pin target headers, recommended parts include:

- straight header, unshrouded DuPont Connector Systems, part # 67996-114
- right-angle header, unshrouded DuPont Connector Systems, part # 68405-114

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TMS</td>
<td>TRST-</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>TDI</td>
<td>GND</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Header Dimensions</td>
</tr>
<tr>
<td>5</td>
<td>PD</td>
<td>no pin (key)</td>
</tr>
<tr>
<td>6</td>
<td>TDO</td>
<td>Pin-to-Pin spacing, 0.100 in. (X)</td>
</tr>
<tr>
<td>7</td>
<td>TCK-RET</td>
<td>GND</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Pin-to-Pin spacing, 0.050 in. (Y)</td>
</tr>
<tr>
<td>9</td>
<td>TCK</td>
<td>GND</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Female connector on adapter:</td>
</tr>
<tr>
<td>11</td>
<td>EMU0</td>
<td>GND</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Samtec: RSM-110-02-S-D</td>
</tr>
<tr>
<td>13</td>
<td>EMU2</td>
<td>EMU3</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>EMU4</td>
</tr>
<tr>
<td>15</td>
<td>SRST</td>
<td>GND</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>EMU2</td>
<td>GND</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>EMU4</td>
<td>GND</td>
</tr>
</tbody>
</table>

Figure 3-2, 20 Pin Header Signals and Dimensions

A recommended target based 20 pin connector is, SAMTEC part # FTR-110-03-G-D-06
Table 1: 14/20-Pin Header Signal Description

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Signal</th>
<th>Description</th>
<th>Emulator State</th>
<th>Target State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TMS</td>
<td>JTAG test mode select.</td>
<td>Output</td>
<td>Input</td>
</tr>
<tr>
<td>3</td>
<td>TDI</td>
<td>JTAG test data input.</td>
<td>Output</td>
<td>Input</td>
</tr>
<tr>
<td>4,8, 10,12</td>
<td>GND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>TDO</td>
<td>JTAG test data output.</td>
<td>Input</td>
<td>Output</td>
</tr>
<tr>
<td>11</td>
<td>TCK</td>
<td>JTAG test clock. TCK is a 12-MHz clock source from the emulation pod. This signal can be used to drive the system test clock.</td>
<td>Output</td>
<td>Input</td>
</tr>
<tr>
<td>2</td>
<td>TRST-</td>
<td>JTAG test reset.</td>
<td>Output</td>
<td>Input</td>
</tr>
<tr>
<td>13</td>
<td>EMU0</td>
<td>Emulation pin 0.</td>
<td>I/O</td>
<td>I/O</td>
</tr>
<tr>
<td>14</td>
<td>EMU1</td>
<td>Emulation pin 1.</td>
<td>I/O</td>
<td>I/O</td>
</tr>
<tr>
<td>5</td>
<td>PD</td>
<td>Presence detect. Indicates that the emulation cable is connected and that the target is powered up. PD should be tied to the target processor’s I/O pins Vcc.</td>
<td>Input</td>
<td>Output</td>
</tr>
<tr>
<td>9</td>
<td>TCK_RET</td>
<td>JTAG test clock return. Test clock input to the emulator. May be a buffered or unbuffered version of TCK.</td>
<td>Input</td>
<td>Output</td>
</tr>
<tr>
<td>15</td>
<td>SRST *</td>
<td>ARM style target reset</td>
<td>I/O</td>
<td>Open drain</td>
</tr>
<tr>
<td>16</td>
<td>GND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>EMU2 *</td>
<td>Emulation pin 2.</td>
<td>I/O</td>
<td>I/O</td>
</tr>
<tr>
<td>18</td>
<td>EMU3 *</td>
<td>Emulation pin 3.</td>
<td>I/O</td>
<td>I/O</td>
</tr>
<tr>
<td>19</td>
<td>EMU4 *</td>
<td>Emulation pin 4.</td>
<td>I/O</td>
<td>I/O</td>
</tr>
<tr>
<td>20</td>
<td>GND</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Reserved for future emulation software support
3.2 Bus Protocol

The IEEE 1149.1 specification covers the requirements for JTAG bus slave devices (such as the TMS320C5x family) and provides certain rules, summarized as follows:

- The TMS/TDI inputs are sampled on the rising edge of the TCK signal of the device.

- The TDO output is clocked from the falling edge of the TCK signal of the device.

When JTAG devices are daisy-chained together, the TDO of one device has approximately a half TCK cycle set up to the next device's TDI signal. This type of timing scheme minimizes race conditions that would occur if both TDO and TDI were timed from the same TCK edge. The penalty for this timing scheme is a reduced TCK frequency.

The IEEE 1149.1 specification does not provide rules for JTAG bus master (emulator) devices.
3.3 Emulator Cable Pod Logic

Figure 3-2 shows a portion of the emulator cable pod. These are the functional features of the emulator pod:

- Signals TMS and TDI are generated from the rising edge of TCK_RET.
- Signals TMS, TDI, TCK, and TRST- are series-terminated to reduce signal reflections.
- A programmable test clock source is provided, you may also provide your own test clock for greater flexibility.

![Figure 3-3, Emulator Pod Interface](image)
3.4 Emulator Cable Pod Signal Timing

Figure 3-4 shows the signal timings for the emulator. Table 2 defines the timing parameters for the emulator. The timing parameters are calculated from standard data sheet parts used in the emulator and cable pod. These parameters are for reference only. Spectrum Digital does not test or guarantee these timings. The emulator pod uses TCK_RET as its clock source for internal synchronization. TCK is provided as an optional target system test clock source.

![Figure 3-4, Emulator Pod Timings](image)

<table>
<thead>
<tr>
<th>No</th>
<th>Reference</th>
<th>Description</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(t_{TCKmin})</td>
<td>TCK_RET period</td>
<td>50</td>
<td>10000</td>
<td>ns</td>
</tr>
<tr>
<td>2</td>
<td>(t_{TCKhighmin})</td>
<td>TCK_RET high pulse duration</td>
<td>15</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>3</td>
<td>(t_{TCKlowmin})</td>
<td>TCK_RET low pulse duration</td>
<td>15</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>4</td>
<td>(t_{\text{td}(XTMX)})</td>
<td>TMS/TDI valid from TCK_RET low</td>
<td>5</td>
<td>22</td>
<td>ns</td>
</tr>
<tr>
<td>5</td>
<td>(t_{\text{tsu}(XTDO\text{min})})</td>
<td>TDO setup time to TCK_RET high</td>
<td>5</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>6</td>
<td>(t_{\text{thd}(XTDO\text{min})})</td>
<td>TDO hold time from TCK_RET high</td>
<td>5</td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>
3.5 Buffering Signals Between the Emulator and the Target System

It is extremely important to provide high-quality signals between the emulator and the target device on the target system. If the distance between the emulation header and the target device is greater than 6 inches, the emulation signals must be buffered. The need for signal buffering and placement of the emulation header can be divided into two categories:

__ No signal buffering. As shown in figure 3-5, the distance between the header and the target device should be no more than 6 inches.

![Figure 3-5, No Signal Buffering](image1)

__ Buffered emulation signals. Figure 3-6 shows the distance between the emulation header and the target device is greater than 6 inches. The target device signals--TMS, TDI, TDO, and TCK_RET are buffered through the same package.

![Figure 3-6, Buffered Emulation Signals](image2)
The EMU0 and EMU1 signals must have pullups to Vcc. The pullup resistor value should be chosen to provide a signal rise time less than 10 μS. A 4.7k ohm resistor is suggested for most applications. EMU0-1 are I/O pins on the target device, however, they are only inputs to the emulator. In general, these pins are used in multiprocessor systems to provide global run/stop operations.

It is extremely important to provide high quality signals, especially on the processor TCK and the emulator TCK_RET signal. In some cases, this may require you to provide special PWB trace routing and to use termination resistors to match the trace impedance. The emulator pod does provide fixed series termination on the TMS, TCK, and TDI signals.

Figure 3-7 shows an application with the system test clock generated in the target system. In this application the TCK signal is left unconnected.

There are two benefits to having the target system generate the test clock:

- The emulator provides programmable test clock (default is 12.28 Mhz). If you generate your own test clock, you can set the frequency to match your system requirements.
- In some cases, you may have other devices in your system that require a test clock when the emulator is not connected.
Figure 3-8 shows a typical multiprocessor configuration. This is a daisy chained configuration (TDO-TDI daisy-chained), which meets the minimum requirements of the IEEE 1149.1 specification. The emulation signals in this example are buffered to isolate the processors from the emulator and provide adequate signal drive for the target system. One of the benefits of a JTAG test interface is that you can generally slow down the test clock to eliminate timing problems. Several key points to multiprocessor support are as follows:

- The processor TMS, TDI, TDO, and TCK should be buffered through the same physical package to better control timing skew.
- The input buffers for TMS, TDI, and TCK should have pullups to Vcc. This will hold these signals at a known value when the emulator is not connected. A pull up resistor of 4.7k ohms is suggested.
3.6 Emulation Timing Calculations

The following are a few examples on how to calculate the emulation timings in your system. For actual target timing parameters, see the appropriate device data sheets.

Assumptions:

- $t_{su}(TTMS)$: Target TMS/TDI setup to TCK high 5 ns
- $t_{h}(TTMS)$: Target TMS/TDI hold from TCK high 5 ns
- $t_{d}(TTDO)$: Target TDO delay from TCK low 10 ns
- $t_{d}(bufmax)$: Target buffer delay maximum 7 ns
- $t_{d}(bufmin)$: Target buffer delay minimum 1 ns
- $t_{bufskew}$: Target buffer skew between two devices in the same package:
 \[\left[t_{d}(bufmax) - t_{d}(bufmin) \right] \times 0.15 = 0.9 \text{ ns} \]
- $t_{cckfactor}$: Assume a 40/60 duty cycle clock 0.4

Given in Table 2:

- $t_{d}(XTMSmax)$: Emulator TMS/TDI delay from TCK_RET high, max 22 ns
- $t_{su}(XTDOmin)$: TDO setup time to emulator TCK_RET high 5 ns

There are two key timing paths to consider in the emulation design:

- the TCK_RET/TDI(t_{prdtck_TMS}) path, and
- the TCK_RET/TDO(t_{prdtck_TDO}) path.

In each case, the worst case path delay is calculated to determine the maximum system test clock frequency.
Case 1: Single processor, direct connection, TMS/TDI timed from TCK_RET.

\[t_{\text{prdtck}_\text{TMS}} = (t_d(\text{XTMS}_{\text{max}}) + t_{su}(\text{TTMS})) \times 2 \]
\[= (22\text{ns} + 5\text{ns}) \times 2 \]
\[= 54\text{ns} \quad (18.5 \text{ MHz}) \]

\[t_{\text{prdtck}_\text{TDO}} = \frac{[t_d(\text{TTDO}) + t_{su}(\text{XTDO}_{\text{min}})]}{t_{\text{ckfactor}}} \]
\[= \frac{(10\text{ns} + 5\text{ns})}{0.4} \]
\[= 37.5\text{ns} \quad (26.6 \text{ MHz}) \]

In this case, the TCK/TMS-TDI path is the limiting factor.

Case 2: Single/multiple processor, TMS/TDI buffered input; TCK_RET/TDO buffered output, TMS/TDI timed from TCK_RET.

\[t_{\text{prdtck}_\text{TMS}} = (t_d(\text{XTMS}_{\text{max}}) + t_{su}(\text{TTMS}) + 2t_d(\text{buf}_{\text{max}})) \times 2 \]
\[= (22\text{ns} + 5\text{ns} + 2(7\text{ns})) \times 2 \]
\[= 82\text{ns} \quad (12.2 \text{ MHz}) \]

\[t_{\text{prdtck}_\text{TDO}} = \frac{[t_d(\text{TTDO}) + t_{su}(\text{XTDO}_{\text{min}}) + t_{\text{bufskew}}]}{t_{\text{ckfactor}}} \]
\[= \frac{(10\text{ns} + 5\text{ns} + 0.9 \text{ ns})}{0.4} \]
\[= 39.8\text{ns} \quad (25.1 \text{ MHz}) \]

In this case, the TCK/TMS-TDI path is the limiting factor.
3.7 Changing Target Cables

Damaged target cables may need replacement or as new processors are developed different JTAG headers will be required. The XDS510USB PLUS has a removable target cable (tail) to accommodate these requirements. To change the target cable use the following steps:

- Turn off the power to the target board.
- Remove the USB cable from the XDS510USB PLUS emulator.
- Remove the JTAG header from the target board.

![Figure 3-9, Remove USB Cable From XDS510USB PLUS]

![Figure 3-10, Remove JTAG Header From Target Board]
Remove the two front panel screws from the XDS510USB PLUS emulator.

Remove the cable retaining plate.

Figure 3-11, Remove Front Panel Screws from XDS510USB PLUS

Figure 3-12, Remove Cable Retaining Plate
“Gently” remove the cable.

“Gently” insert the new cable with the gold tabs up.
Replace the cable retaining plate by securing the two front panel screws on the XDS510USB PLUS emulator. If installed properly the retaining plate should not be bowed or bent.

Insert the JTAG header onto the target board.

Figure 3-15, Replace Cable Retaining Plate On XDS510USB PLUS

Figure 3-16, Insert JTAG Header Onto Target Board
Attach the USB cable to the XDS510USB PLUS emulator.

Apply power to the target board.

At the host system you may launch the debugger.
3.8 Target Cables

The XDS510 USB PLUS uses modular target cables that can be interchanged for use with specific target JTAG headers. The pin spacing in the cable header may vary from target cable to target cable based on the mating connector on the target board. Refer to the specification of the mating connector part numbers identified in Section 3.1 for the exact spacing of the pins on the board header used in your system. The mechanical information for two of these target cables is shown below. All dimensions are in inches and are nominal dimensions, unless otherwise specified.

![Diagram of 20 Pin CTI Target JTAG Cable]
The target cable is flexible and about 13 inches long. It is made from micro coax cable. This type of cable has the following flex/bend limitations.

Figure 3-19, 14 Pin Target JTAG Cable

Figure 3-20, Target Cable Bend Limitations

1/8 inch minimum bend diameter
Appendix A

Mechanical Information

This appendix contains the mechanical information about the XDS510USB PLUS JTAG Emulator produced by Spectrum Digital.
The XDS510USB PLUS JTAG Emulator consists of a 6-foot USB cable, the XDS510USB PLUS emulator pod, and a section of cable (tail) that connects to the target system. The overall emulator/cable length is approximately 7 feet, 6.5 inches. Figure 3-8 shows the mechanical dimensions for the XDS510USB PLUS 14 pin header. The XDS510USB PLUS JTAG emulator enclosure is nonconductive plastic with two recessed metal screws.

Figure A-1, XDS510USB PLUS Dimensions

Note: All dimensions are in inches and are nominal dimensions, unless otherwise specified.